Points A and B are at #(2 ,1 )# and #(4 ,7 )#, respectively. Point A is rotated counterclockwise about the origin by #(3pi)/2 # and dilated about point C by a factor of #3 #. If point A is now at point B, what are the coordinates of point C?

2 Answers
Jun 21, 2017

The coordinates of point #C=(-1/2,-13/2)#

Explanation:

The matrix of a rotation counterclockwise by #3/2pi# about the origin is

#((0,1),(-1,0))#

Therefore, the transformation of point #A# is

#A'=((0,1),(-1,0))((2),(1))=((1),(-2))#

Let point #C# be #(x,y)#, then

#vec(CB)=2 vec(CA')#

#((4-x),(7-y))=3((1-x),(-2-y))#

So,

#4-x=3(1-x)#

#4-x=3-3x#

#2x=-1#

#x=-1/2#

and

#7-y=3(-2-y)#

#7-y=-6-3y#

#2y=-6-7#

#y=-13/2#

Therefore,

point #C=(-1/2,-13/2)#

Jun 21, 2017

#C=(-1/2,-13/2)#

Explanation:

#"under a counterclockwise rotation about the origin of " (3pi)/2#

#• " a point " (x,y)to(y,-x)#

#rArrA(2,1)toA'(1,-2)" where A' is the image of A"#

#"under a dilatation about C of factor 3"#

#vec(CB)=color(red)(3)vec(CA')#

#rArrulb-ulc=color(red)(3)(ula'-ulc)#

#rArrulb-ulc=3ula'-3ulc#

#rArr2ulc=3ula'-ulb#

#color(white)(rArr2ulc)=3((1),(-2))-((4),(7))#

#color(white)(rArr2ulc)=((3),(-6))-((4),(7))=((-1),(-13))#

#rArrulc=1/2((-1),(-13))=((-1/2),(-13/2))#

#"the components of " ulc" are the coordinates of C"#

#rArrC=(-1/2,-13/2)#