What is the solution to the Initial Value Problem (IVP) #y''=2e^(-x) # with the IVs #y(0)=1,y'(0)=0#?
2 Answers
Explanation:
integrating (1) once we get
using the initial condition
integrating once more
using the initial condition
# f(x) = 2e^(-x) + 2x -1 #
Explanation:
As this is an IVP (Initial Value Problem) we can use Laplace Transforms:.
We have:
# y''=2e^(-x) # with the IVs#y(0)=1,y'(0)=0#
If we take Laplace Transformations of both sides of the above equation then we get:
# ℒ \ {y''} = ℒ \ {2e^(-x) } #
Then using the known property of the LT:
# ℒ \ {y''} =s^2 F(s)−s f(0)−f'(0) #
# ℒ \ {e^(at)} =1/(s-a) #
Then we have:
# s^2 F(s)−s f(0)−f'(0) = 2/(s+1) #
# :. s^2 F(s)-s-0 = 2/(s+1) #
# :. s^2 F(s) = s+2/(s+1) #
# :. s^2 F(s) = (s(s+1)+2)/(s+1) #
# :. s^2 F(s) = (s^2+s+2)/(s+1) #
# :. F(s) = (s^2+s+2)/(s^2(s+1)) #
Now we can use partial fraction to decompose this expression:
# (s^2+s+2)/(s^2(s+1)) -= A/s + B/s^2 + C/(s+1) #
# => s^2+s+2-= As(s+1) + B(s+1) + Cs^2 #
We can find the constant coefficient as follows:
Put
#s=0 \ \ \ \ \ => 2=0+B+0 => B=2 #
Put#s=-1 => 2=0+0+C => C=2 #
Compare#Coef(s^2) => 1=A+C => A=-1 #
Thus we have:
# F(s) = -1/s + 2/s^2 +2/(s+1) #
Now if we take Inverse Laplace Transformations we have:
# ℒ^(-1) \ {F(s) } = ℒ^(-1) \ {-1/s} + ℒ^(-1) \ {2/s^2} +ℒ^(-1) \ {2/(s+1)} #
Again using the known property of the LT (inverses):
# f(x) = -1 + 2x +2e^(-x) #
Hence the complete solution is:
# f(x) = 2e^(-x) + 2x -1 #