Is #f(x) =(x+1)^3+3x^2+4x-3# concave or convex at #x=-1#?
1 Answer
Jun 26, 2017
The second derivative is positive, hence the curve is concave upwards at
Explanation:
Given -
#f(x)=(x+1)^3+3x^2+4x-3#
#f'(x)=3(x+1)^2(1)+6x+4#
#f'(x)=3(x+1)^2+6x+4#
#f''(x) = 6(x+1)+6#
#f''(x)=6x+6+6#
#f''(x)=6x+12#
At
#6x=-12#
#x=-12/6=-2#
At
At
At