How do you simplify #(2\times 4y^{-3})^{1}#?

1 Answer
Jun 27, 2017

See a solution process below:

Explanation:

First, simplify the term within the parenthesis by rewriting the expression as:

#(2 x 4y^-3)^1 => ((2 xx 4) xx y^-3)^1 = (8 xx y^-3)^1 =>#

#(8y^-3)^1#

Next, use this rule of exponents to eliminate the exponent on the outside of the parenthesis:

#a^color(red)(1) = a#

#(8y^-3)^color(red)(1) = 8y^-3#

Now, use this rule of exponents to eliminate the negative exponent, if necessary:

#x^color(red)(a) = 1/x^color(red)(-a)#

#8y^color(red)(-3) => 8/y^color(red)(- -3) => 8/y^3#