Lim x->0 √1-cos 2x/√2x=? Thanks

3 Answers
Jun 27, 2017

#lim_(x->0) (sqrt(1-cos(2x))/sqrt(2x)) = 0#

Explanation:

Disclaimer: I don't know much about limits besides the general idea of what they are, but here's my take on this:

Looking at the limit:
#lim_(x->0) (sqrt(1-cos(2x))/sqrt(2x))#
#iff sqrt(lim_(x->0) ((1-cos(2x))/(2x))#

Using l'hopital's method, we can see that both the numerator and denominator is approaching zero, so:
If
#lim_(x->c) (f(x)) = lim_(x->c) (g(x)) = 0 or +-oo#

then #lim_(x->c) (f(x))/g(x) = lim_(x->c) (f'(x))/(g'(x)) #

In this case #f(x) = 1-cos(2x)#, #f'(x) = 2sin(2x)#
#g(x) = 2x#, #g'(x) = 2#

Therefore:
#sqrt(lim_(x->0) ((1-cos(2x))/(2x)) ##= sqrt(lim_(x->0) ((2sin(2x))/2)#

Now we have eliminated the problem of dividing by zero, so
#sqrt(lim_(x->0) ((2sin(2x))/2) ##= sqrt(0/2) = 0#

Jun 28, 2017

#lim_(xrarr0)sqrt(1-cos2x)/sqrt(2x)=sqrt(lim_(xrarr0)(1-cos2x)/(2x))#

Knowing that the Maclaurin series for #cosx# is #cosx=sum_(n=0)^oo((-1)^nx^(2n))/((2n)!)=1-x^2/(2!)+x^4/(4!)-x^6/(6!)+...#, we can see that #cos2x=sum_(n=0)^oo((-1)^n(2x)^(2n))/((2n)!)=1-(4x^2)/(2!)+(16x^4)/(4!)-(64x^6)/(6!)+...#

Then, we can say the limit is:

#=sqrt(lim_(xrarr0)(1-(1-(4x^2)/(2!)+(16x^4)/(4!)-(64x^6)/(6!)+...))/(2x))#

#=sqrt(lim_(xrarr0)((4x^2)/(2!)-(16x^4)/(4!)+(64x^6)/(6!)+...)/(2x))#

#=sqrt(lim_(xrarr0)(2x)/(2!)-(8x^3)/(4!)+(32x^6)/(6!)+...)#

As the series continues infinitely, all the terms contain an #x# and will become #0# as #xrarr0#.

#=sqrt0#

#=0#

Jun 28, 2017

#lim_(x->0)sqrt(1-cos(2x))/sqrt(2x) = 0#

Explanation:

#lim_(x->0)sqrt(1-cos(2x))/sqrt(2x) = lim_(x->0)sqrt((1-cos(2x))/(2x))#

Using the substitution #theta = 2x#, when #x# goes to #0#, #theta# also goes to #0#

#lim_(x->0)sqrt((1-cos(theta))/(theta))#

Which, if you look closely, you'll see is the square root of a fundamental limit, one we know to be 0. So the limit as a whole is #0#

(If you don't quite recognize it as a fundamental limit, you can tweak it so it involves the other fundamental limit #lim_(x->0)sin(x)/x = 1#. A non-circular proof of that, however, requires either to use the epsilon-delta definition of limits or some geometric arguments)