How do you differentiate #f(x)=sin^3xcosx#?
1 Answer
Jun 28, 2017
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"given " f(x)=g(x).h(x)" then"#
#f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"#
#g(x)=sin^3x=(sinx)^3#
#"differentiate using the "color(blue)"chain rule"#
#g'(x)=3(sinx)^2xxd/dx(sinx)=3sin^2xcosx#
#h(x)=cosxrArrh'(x)=-sinx#
#rArrf'(x)=sin^3x(-sinx)+3sin^2xcosx(cosx)#
#color(white)(rArrf'(x))=3sin^2cos^2x-sin^4x#