How do you solve the system of equations #8x + 15y = 85# and #x + y = 8#?

2 Answers
Jun 29, 2017

#x=5#
#y=3#

Explanation:

#8x+15y=85#
#x+y=8#
find one of the variables from the second equation: let's use #y# for example... #y=8-x#

substitute that into the first equation, #8x+15(8-x)=85#
now simplify that... #8x+120-15x=85#
add like terms and isolate the #x# coefficient term: #-7x+120=85#
#-7x=-35#
#x=5#

now take #x# value and put it back into the equation you got for #y#: #y=8-(5)=8-5=3#
#\therefore y=3#

Jun 29, 2017

#(x,y)to(5,3)#

Explanation:

#8x+15color(red)(y)=85to(1)#

#x+color(red)(y)=8to(2)#

#"from " (2)color(white)(xx) color(red)(y)=8-xto(3)#

#"substitute " color(red)(y)=8-x" into " (1)#

#rArr8x+15(8-x)=85#

.#rArr8x+120-15x=85larr" distributing"#

#rArr-7x+120=85#

#"subtract 120 from both sides"#

#-7xcancel(120)cancel(-120)=85-120#

#rArr-7x=-35#

#"divide both sides by - 7"#

#(cancel(-7) x)/cancel(-7)=(-35)/(-7)#

#rArrx=5#

#"substitute this value into " (3)#

#rArry=8-5=3#

#color(blue)"As a check " "in " (1)#

#(8xx5)+(15xx3)=40+45=85rarr" True"#

#rArr"the point of intersection "=(5,3)#
graph{(y+x-8)(y+8/15x-17/3)=0 [-10, 10, -5, 5]}