How do you simplify #\frac { 54p ^ { 2} } { - 63p }#?

1 Answer
Jul 2, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(-54/63)(p^2/p) = > (-(9 xx 6)/(9 xx 7))(p^2/p) =>#

#(-(color(red)(cancel(color(black)(9))) xx 6)/(color(red)(cancel(color(black)(9))) xx 7))(p^2/p) => -6/7(p^2/p)#

Now, use these rules of exponents to simplify the #p# terms:

#a = a^color(red)(1)# and #x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #a^color(red)(1) = a#

#-6/7(p^2/p) => -6/7(p^color(red)(2)/p^color(blue)(1)) = -6/7p^(color(red)(2)-color(blue)(1)) =>#

#-6/7p^1 => -6/7p#

Or

#-(6p)/7#