What is the standard form of #y(64y + 1)(y + 25) #?
1 Answer
Explanation:
Standard form of a polynomial means to write it like this:
#a*y^n + b*y^(n-1) + c*y^(n-2) + cdots + p * y + q#
Where the terms of the polynomial are written in order of decreasing exponents.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this case, let's start by expanding the two terms
#"FIRST"#
#(color(red)(64y)+1)(color(red)y+25) => color(red)(64y * y) = color(red)(64y^2#
#"OUTER"#
#(color(blue)(64y)+1)(y+color(blue)25) => color(blue)(64y * 25) = color(blue)(1600y#
#"INNER"#
#(64y+color(limegreen)1)(color(limegreen)y+25) => color(limegreen)(1*y) = color(limegreen)(y#
#"LAST"#
#(64y + color(orange)1)(y+color(orange)25) => color(orange)(1*25) = color(orange)(25#
So our polynomial is:
#(64y+1)(y+25) = color(red)(64y^2) + color(blue)(1600y) + color(limegreen)y + color(orange)25 = 64y^2 + 1601y + 25#
Finally, remember that all of this was multiplied by
#y(64y+1)(y+25)#
So, we need to multiply our polynomial by
#color(orange)y(64y^2+1601y+25) = 64y^2*color(orange)y + 1601y*color(orange)y + 25 * color(orange)y#
#= 64y^3 + 1601 y^2 + 25y#
Final Answer