First, take the square root of #5#:
#6/(4 - (2 xx 2.236)) = 6/(4 - 4.472) = 6/-0.472 =#
#-12.708# rounded to the nearest thousandth.
If what you want is the fraction to be rationalized we would follow this process:
#(4 + 2sqrt(5))/(color(red)(4) + color(red)(2sqrt(5))) xx 6/(color(blue)(4) - color(blue)(2sqrt(5))) =>#
#(6(4 + 2sqrt(5)))/((color(red)(4) * color(blue)(4)) - (color(red)(4) * color(blue)(2sqrt(5))) + (color(blue)(4) * color(red)(2sqrt(5))) - (color(blue)(2sqrt(5)) * color(red)(2sqrt(5))) =>#
#(6(4 + 2sqrt(5)))/(16 - 8sqrt(5) + 8sqrt(5) - ((2 * 2)(sqrt(5) * sqrt(5))) =>#
#(6(4 + 2sqrt(5)))/(16 - 0 - (4 * 5)) =>#
#(6(4 + 2sqrt(5)))/(16 - 20) =>#
#(6(4 + 2sqrt(5)))/-4 =>#
#((6 * 4) + (6 * 2sqrt(5)))/-4 =>#
#(24 + 12sqrt(5))/-4 =>#
#24/-4 + (12sqrt(5))/-4 =>#
#-6 - 3sqrt(5)#
Substituting #-0.472# for #sqrt(5)# gives:
#-6 - (3 * 2.236) =>#
#-6 - 6.708 =>#
#-12.708#