Let, #y=arc sin((2x)/(1+x^2))=arc sinu, where, u=(2x)/(1+x^2).#
Thus, #y# is a fun. of #u,# and #u# of #x.#
Therefore, by the Chain Rule,
# dy/dx=dy/(du)*(du)/dx.................(ast).#
Now, #y=arc sin u rArr dy/(du)=1/sqrt(1-u^2).#
#=1/sqrt{1-((2x)/(1+x^2))^2}......[because, u=(2x)/(1+x^2)],#
#=1/sqrt{((1+x^2)^2-4x^2)/(1+x^2)^2},#
#=(1+x^2)/sqrt{(1+2x^2+x^4)-4x^2),#
#=(1+x^2)/sqrt(1-2x^2+x^4)=(1+x^2)/sqrt{(1-x^2)^2}.#
Note that, here, the Square Root is, in fact, the
the Positive Square Root.
# rArr dy/(du)=(1+x^2)/|1-x^2|............(ast^1).#
Next, #u=(2x)/(1+x^2) rArr (du)/dx=2d/dx{x/(1+x^2)},#
#=2[{(1+x^2)d/dx(x)-xd/dx(1+x^2)}]/(1+x^2)^2,..."[Quotient Rule},"#
#=[2{(1+x^2)(1)-x(2x)}]/(1+x^2)^2.#
# rArr (du)/dx=(2(1-x^2))/(1+x^2)^2................(ast^2).#
Utilising #(ast^1) & (ast^2)# in #(ast),# we get,
# dy/dx={(1+x^2)/|1-x^2|}{(2(1-x^2))/(1+x^2)^2}, i.e., #
#dy/dx=(2/(1+x^2))*(1-x^2)/|1-x^2|.#
Now, recall that, # if, 1 < x^2, i.e., (1-x^2) <0, |1-x^2|=-(1-x^2).#
# :. dy/dx=-2/(1+x^2); if 1 lt x^2.#
Similarly, #if 1 gt x^2, then, dy/dx=2/(1+x^2).#
Since, #1 < x^2 iff |x| < 1,# we finally have,
#dy/dx=2/(1+x^2); if |x| < 1, and,#
#dy/dx=-2/(1+x^2); if |x| > 1.#
Enjoy Maths.!