Question #91456

1 Answer
Jul 14, 2017

#dy/dx = 2x^2sin(x^4) - sinx/(2root(4)(x)) " "" "" "" "x >= 0#

Explanation:

#y = int_sqrtx^(x^2)sqrttsin(t^2)dt = int_0^(x^2)sqrttsin(t^2)dt - int_0^sqrtxsqrttsin(t^2)dt#

We know that for an arbitrary constant #k#:

#d/dx(int_k^xf(t)dt) = f(x)#

Therefore, using chain rule we can also say that

#d/dx(int_k^(g(x))f(t)dt) = f(g(x)) * g'(x)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This means that:

#d/dx(int_0^(x^2)sqrttsin(t^2)dt) = sqrt(x^2)sin((x^2)^2)*2x = 2x|x|sin(x^4)#

#d/dx(int_0^sqrtxsqrttsin(t^2)dt) = sqrt(sqrtx)sin(sqrtx^2)*1/(2sqrtx) = sin(x)/(2root(4)(x)#

Note that the second integral is only defined for non-negative values of #x#, since the square root of a negative number is not real.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Therefore, the derivative of #y# is:

#dy/dx = 2x|x|sin(x^4) - sin(x)/(2root(4)(x)#

And since the function is already only defined for non-negative values of #x#, we can replace #absx# with #x#.

#dy/dx = 2x^2sin(x^4) - sinx/(2root(4)(x)) " "" "" "" "x >= 0#

Final Answer