Step 1) Solve the second equation for #x#:
#x + 6y = 18#
#x + 6y - color(red)(6y) = 18 - color(red)(6y)#
#x + 0 = 18 - 6y#
#x = 18 - 6y#
Step 2) Substitute #(18 - 6y)# for #x# in the first equation and solve for #y#:
#2x - 3y = -24# becomes:
#2(18 - 6y) - 3y = -24#
#(2 xx 18) - (2 xx 6y) - 3y = -24#
#36 - 12y - 3y = -24#
#36 + (-12 - 3)y = -24#
#36 + (-15y) = -24#
#36 - 15y = -24#
#-color(red)(36) + 36 - 15y = -color(red)(36) - 24#
#0 - 15y = -60#
#-15y = -60#
#(-15y)/color(red)(-15) = (-60)/color(red)(-15)#
#(color(red)(cancel(color(black)(-15)))y)/cancel(color(red)(-15)) = 4#
#y = 4#
Step 3) Substitute #4# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:
#x = 18 - 6y# becomes:
#x = 18 - (6 * 4)#
#x = 18 - 24#
#x = -6#
The solution is: #x = -6# and #y = 4# or #(-6, 4)#