#x#-intercept
To find the #x#-intercept, substitute #0# for #y# and solve for #x#:
#5x + 4y = -6# becomes:
#5x + (4 * 0) = -6#
#5x + 0 = -6#
#5x = -6#
#(5x)/color(red)(5) = -6/color(red)(5)#
#(color(red)(cancel(color(black)(5)))x)/cancel(color(red)(5)) = -6/5#
#x = -6/5#
The #x#-intercept is: #-6/5# or #(-6/5, 0)#
#y#-intercept
To find the #y#-intercept, substitute #0# for #x# and solve for #y#:
#5x + 4y = -6# becomes:
#(5 * 0) + 4y = -6#
#0 + 4y = -6#
#4y = -6#
#(4y)/color(red)(4) = -6/color(red)(4)#
#(color(red)(cancel(color(black)(4)))y)/cancel(color(red)(4)) = -(2 xx 3)/color(red)(2 xx 2)#
#y = -(color(red)(cancel(color(black)(2))) xx 3)/color(red)(color(black)(cancel(color(red)(2))) xx 2)#
#y = -3/2#
The #y#-intercept is: #-3/2# or #(0, -3/2)#