What is the arc length of #r(t) = (t, 1/t, t)# in the interval #[1,4]#?
1 Answer
Jul 15, 2017
Approximate arc length via numerical method is:
# 4.3531603 ... #
Explanation:
The arc length of a curve:
# vec(r) (t) = << f(t), g(t), h(t) >> #
Over an interval
# L = int_a^b \ || vec(r) (t) || \ dt #
# \ \ = int_a^b \ sqrt(f'(t)^2 +g'(t)^2 + h'(t)^2) \ dt #
So, for the given curve:
# vec(r)(t) = (t, 1/t, t) #
the arc length over
# L = int_1^4 \ sqrt( (1)^2 + (-1/t^2)^2 + (1)^2 ) \ dt #
# \ \ = int_1^4 \ sqrt( 1 + 1/t^4 + 1 ) \ dt #
# \ \ = int_1^4 \ sqrt( 2 + 1/t^4 ) \ dt #
The integral does not have an elementary antiderivative,and so we evaluate the definite integral al numerically:
# L = 4.3531603 ... #