How do you multiply #3v ^ { 8} \cdot 4u ^ { 5} v ^ { 5} \cdot 3u#?

2 Answers
Jul 16, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#(3 * 4 * 3)(u^5 * u)(v^8 * v^5) =>#

#36(u^5 * u)(v^8 * v^5)#

Next, use this rule for exponents to rewrite the #u# term:

#a = a^color(blue)(1)#

#36(u^5 * u^color(blue)(1))(v^8 * v^5)#

Now, use this rule of exponents to multiply the #u# and #v# terms:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#36(u^color(red)(5) * u^color(blue)(1))(v^color(red)(8) * v^color(blue)(5)) => #

#36u^(color(red)(5)+color(blue)(1))v^(color(red)(8)+color(blue)(5)) => #

#36u^6v^13#

Jul 16, 2017

#36u^6v^13#

Explanation:

#3v^8*4u^5v^5*3u#

#:.v^8*v^5=v^(8+5)#

#:.u^5*u^1=u^(5+1)#

#:.36v^(8+5)u^(5+1)#

#:.3*4*3=36#

#:.36u^6v^13#