How do you simplify #\frac { 5\sqrt { 5a ^ { 2} } } { 3\sqrt { 3a ^ { 4} } }#?

1 Answer
Jul 19, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#5/3(sqrt(5a^2)/sqrt(3a^4))#

Next, use this rule for radicals to again rewrite the expression:

#sqrt(color(red)(a))/sqrt(color(blue)(b)) = sqrt(color(red)(a)/color(blue)(b))#

#5/3(sqrt(color(red)(5a^2))/sqrt(color(blue)(3a^4))) => 5/3sqrt(color(red)(5a^2)/color(blue)(3a^4)) => 5/3sqrt(color(red)(5)/color(blue)(3a^2))#

Next, use this rule to rewrite and simplify the expression:

#sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))#

#5/3sqrt(color(red)(5)/color(blue)(3a^2)) => 5/3sqrt(color(red)(5)/color(blue)(3) *1/a^2) => 5/3sqrt(color(red)(5)/color(blue)(3))sqrt(1/a^2) =>#

#5/3sqrt(5/3)1/a#

If necessary we can rewrite the radical as:

#5/3(5/3)^(1/2)1/a => (5/3)^1(5/3)^(1/2)1/a =>#

#(5/3)^(2/2)(5/3)^(1/2)1/a => (5/3)^(2/2+1/2)1/a => (5/3)^(3/2)1/a#