How do you multiply #\frac { 6a ^ { 5} c } { 5a c ^ { 4} } \times \frac { 4a ^ { 3} } { 9a c ^ { 4} }#?

1 Answer
Jul 20, 2017

Multiply all the top numbers and the same for the bottom numbers, just like a regular fraction multiplication. Group like unknowns and add their exponents. You will end up with a single fraction.

Explanation:

We have: #(6a^5c)/(5ac^4)xx(4a^3)/(9ac^4)#

Numbers:
#6xx4=24#
#5xx9=45#

Top:
#a^5xxa^3=a^8#
#cxx1=c#

Bottom:
#axxa=a^2#
#c^4xxc^4=c^8#

Re-assembling:
#(24a^8c)/(45a^2c^8#

Cancelling the divided unknowns exponents by subtraction:
#(24cancel(a^8)a^6cancelc)/(45cancel(a^2)cancel(c^8)c^7#

Then:
#(6a^5c)/(5ac^4)xx(4a^3)/(9ac^4)=(24a^6)/(45c^7)=(8a^6)/(15c^7)#