How do you solve #5x - 1\leq \frac { 2x - 1} { x + 1}#?

1 Answer
Jul 20, 2017

The solution is #x in (-oo,-1) uu [-2/5,0]#

Explanation:

We cannot do crossing over, we simplify the inequality

#5x-1<=(2x-1)/(x+1)#

#(5x-1)-(2x-1)/(x+1)<=0#

#((5x-1)(x+1)-(2x-1))/(x+1)<=0#

#(5x^2+4x-1-2x+1)/(x+1)<=0#

#(5x^2+2x)/(x+1)<=0#

#(x(5x+2))/(x+1)<=0#

Let #f(x)=(x(5x+2))/(x+1)#

Now, we build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-1##color(white)(aaaaaa)##-2/5##color(white)(aaaaaa)##0##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+1##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaa)##0##color(white)(aa)##+##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##5x+2##color(white)(aaa)##-##color(white)(aaaa)##||##color(white)(aa)##-##color(white)(aaaa)##0##color(white)(aa)##+##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##-##color(white)(aaaa)##0##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaa)##0##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+#

Therefore,

#f(x)<=0# when #x in (-oo,-1) uu [-2/5,0]#

graph{(5x^2+2x)/(x+1) [-50.9, 53.13, -30.16, 21.9]}

graph{(5x^2+2x)/(x+1) [-50.9, 53.13, -30.16, 21.9]}