How do you show that #sin(x + pi) = -sin(x)# ?
3 Answers
Use the identity:
Substitute x for A and
The second term disappears, because
The fact that
Q.E.D.
You can graph it and show it.
graph{sinx [-4.385, 4.384, -2.187, 2.198]}
graph{sin(x + pi) [-4.385, 4.384, -2.187, 2.198]}
graph{-sinx [-4.385, 4.384, -2.187, 2.198]}
A geometric argument...
Explanation:
The points on the unit circle have coordinates
So the point
This point is directly opposite
Equating coordinates, we find:
#{ (cos (x+pi) = -cos x), (sin (x+pi) = -sin x) :}#