How do you calculate #sqrt(71 * 70 * 69 * 68 + 1)# ?
4 Answers
Explanation:
If we put
#sqrt(71*70*69*68+1) = sqrt((x+3/2)(x+1/2)(x-1/2)(x-3/2)+1)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt((x^2-9/4)(x^2-1/4)+1)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt(x^4-10/4x^2+9/16+1)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt(x^4-10/4x^2+25/16)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt((x^2-5/4)^2)#
#color(white)(sqrt(71*70*69*68+1)) = x^2-5/4#
#color(white)(sqrt(71*70*69*68+1)) = 139^2/4-5/4#
#color(white)(sqrt(71*70*69*68+1)) = (19321-5)/4#
#color(white)(sqrt(71*70*69*68+1)) = 19316/4#
#color(white)(sqrt(71*70*69*68+1)) = 4829#
Explanation:
Remember the formula:
#(a-b)(a+b) = a^2 - b^2#
Using this, we can say that:
#70*69 = (69.5+1/2)(69.5-1/2) = 69.5^2 - (1/2)^2 = 69.5^2 - 1/4#
#71*68 = (69.5+3/2)(69.5-3/2) = 69.5^2 - (3/2)^2 = 69.5^2 - 9/4#
Therefore:
#sqrt(71*70*69*68+1)#
#= sqrt((69.5^2-1/4)(69.5^2-9/4) + 1#
Using the foil method:
#= sqrt(69.5^4 - 5/2 * 69.5^2 + 9/16 + 1)#
#= sqrt(69.5^4 - 5/2 * 69.5^2 + 25/16)#
Multiply by
#= sqrt(16(69.5^4 - 5/2 * 69.5^2 + 25/16))/4#
#= sqrt(2^4*69.5^4 - 4 * 5/2 * 2^2 * 69.5^2 + 16*25/16)/4#
Notice how I split up the 16 in the middle term so I can multiply part of it by the 5/2 and the rest of it by the 69.5^2.
#= sqrt(139^4 - 10 * 139^2 + 25)/4#
Replace
#= sqrt(x^2 - 10x + 25)/4#
#= sqrt((x-5)^2)/4#
#= (x-5)/4#
#= (139^2 - 5)/4#
Using long multiplication, we get:
#= (19321 - 5)/4#
#= 19316/4#
And finally using long division, we get:
#4829#
Final Answer
Explanation:
Explanation:
An easier way...
#70*70 = 4900#
So:
#70*69 = 4900-70 = 4830#
#70*68 = 4830-70 = 4760#
#71*68 = 4760+68 = 4828#
So:
#sqrt(71*70*69*68+1) = sqrt(4830*4828+1)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt((4829+1)(4829-1)+1)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt(4829^2-1^2+1)#
#color(white)(sqrt(71*70*69*68+1)) = sqrt(4829^2)#
#color(white)(sqrt(71*70*69*68+1)) = 4829#