How do you evaluate #log_2 80#?
3 Answers
Explanation:
We know
Explanation:
Here's a way of calculating an approximation to
First note that:
#2^6 = 64 < 80 < 128 = 2^7#
So:
#6 < log_2 80 < 7#
Now:
#log_2 80 = log_2 64 + log_2 (80/64) = 6 + log_2 (5/4)#
Next note that by squaring
Let's try:
#(5/4)^2 = 25/16 < 2#
So:
#0 < log_2(5/4) < 1/2#
If we square again, we double again, so can test whether we need to add
#(25/16)^2 = 625/256 > 2#
So add
Next:
#(625/512)^2 = 390625/262144 < 2#
So don't add
#(390625/262144)^2 = 152587890625/68719476736 ~~ 2.22 > 2#
So do add
If we enlist the help of a calculator - say a four function one with
#80/64 = 1.25" "color(red)(6)#
#1.25^2 = 1.5625" "color(grey)(cancel(1/2))#
#1.5625^2 ~~ 2.4414603" "color(red)(1/4)#
#2.4414603/2 ~~ 1.2207032#
#1.2207032^2 ~~ 1.4901163" "color(grey)(cancel(1/8))#
#1.4901163^2 ~~ 2.2204466" "color(red)(1/16)#
#2.2204466/2 ~~ 1.1102233#
#1.1102233^2 ~~ 1.2325958" "color(grey)(cancel(1/32))#
#1.2325958^2 ~~ 1.5192924" "color(grey)(cancel(1/64))#
#1.5192924^2 ~~ 2.3082494" "color(red)(1/128)#
#2.3082494/2 ~~ 1.1541247#
#1.1541247^2 ~~ 1.3320038" "color(grey)(cancel(1/256))#
#1.3320038^2 ~~ 1.7742341" "color(grey)(cancel(1/512))#
#1.7742341^2 ~~ 3.1479066" "color(red)(1/1024)#
#3.1479066/2 ~~ 1.5739533#
#1.5739533^2 ~~ 2.4773290" "color(red)(1/2048)#
So:
#log_2(80) ~~ 6+1/4+1/16+1/128+1/1024+1/2048 = 12947/2048 ~~ 6.322#
Explanation:
Alternatively, if we know that
#log_2(80) = log_2 8 + log_2 10#
#color(white)(log_2(80)) = log_2 2^3 + 1/(log_10 2)#
#color(white)(log_2(80)) ~~ 3 + 1/0.30103#
#color(white)(log_2(80)) ~~ 6.321928#