How do you divide #\frac { 6x - 6} { 5} \div \frac { x - 1} { 15}#?

1 Answer
Jul 22, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#((6x - 6)/5)/((x - 1)/15)#

Next, use this rule for dividing fractions to rewrite the expression again:

#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#

#(color(red)(6x - 6)/color(blue)(5))/(color(green)(x - 1)/color(purple)(15)) => (color(red)((6x - 6)) xx color(purple)(15))/(color(blue)(5) xx color(green)((x - 1))) => color(red)((6(x - 1)) xx color(purple)(15))/(color(blue)(5) xx color(green)((x - 1))) =>#

#(color(red)(6cancel((x - 1))) xx cancel(color(purple)(15))3)/(cancel(color(blue)(5)) xx color(green)(cancel((x - 1)))) => 18#

However, we need to ensure we do not divide by #0#. Therefore, the exclude value is when:

#(x - 1)/15 = 0# so #x != 1#