To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.
#(color(red)(-7a^2) + color(red)(3a) - color(red)(7))(color(blue)(-8a^2) - color(blue)(6a) + color(blue)(8))# becomes:
#(color(red)(7a^2) xx color(blue)(8a^2)) + (color(red)(7a^2) xx color(blue)(6a)) - (color(red)(7a^2) xx color(blue)(8)) - (color(red)(3a) xx color(blue)(8a^2)) - (color(red)(3a) xx color(blue)(6a)) + (color(red)(3a) xx color(blue)(8)) + (color(red)(7) xx color(blue)(8a^2)) + (color(red)(7) xx color(blue)(6a)) - (color(red)(7) xx color(blue)(8))#
#56a^4 + 42a^3 - 56a^2 - 24a^3 - 18a^2 + 24a + 56a^2 + 42a - 56#
We can now group and combine like terms:
#56a^4 + 42a^3 - 24a^3 - 56a^2 - 18a^2 + 56a^2 + 24a + 42a - 56#
#56a^4 + (42 - 24)a^3 + (-56 - 18 + 56)a^2 + (24 + 42)a - 56#
#56a^4 + 18a^3 + (-18)a^2 + 66a - 56#
#56a^4 + 18a^3 - 18a^2 + 66a - 56#