How do you expand #(x-3y)^4#?
1 Answer
Jul 26, 2017
Explanation:
#"expand using the "color(blue)"binomial theorem"#
#•color(white)(x)(a+b)^n=sum_(r=0)^n((n),(r))a^(n-r)b^r#
#"where "((n),(r))=(n!)/(r!(n-r)!)#
#"the coefficients can be generated using the appropriate"#
#"row of "color(blue)"Pascal's triangle"#
#"for n =4 the row of coefficients is"#
#1color(white)(x)4color(white)(x)6color(white)(x)4color(white)(x)1#
#"here " a=x" and " b=-3y#
#rArr(x-3y)^4#
#=1.x^4(-3y)^0+4.x^3(-3y)^1+6.x^2(-3y)^2+4.x^1(-3y)^3+1.x^0(-3y)^4#
#=x^4-12x^3y+54x^2y^2-108xy^3+81y^4#