How do you divide #(5x ^ { 3} + 9x ^ { 2} - 26x - 27) \div ( x + 3)#?

2 Answers
Jul 27, 2017

7

Explanation:

Use the Factor Theorem, #f(a)=0#

#x+3=0#
#x=-3#

#f(-3)=5x^3+9x^2-26x-27#
#=5(-3)^3+9(-3)^2-26(-3)-27#
#=7#

Jul 27, 2017

#5x^2-6x-8-3/(x+3)#

Explanation:

#"one way is to use the divisor as a factor in the numerator"#

#"consider the numerator"#

#color(red)(5x^2)(x+3)color(magenta)(-15x^2)+9x^2-26x-27#

#=color(red)(5x^2)(x+3)color(red)(-6x)(x+3)color(magenta)(+18x)-26x-27#

#=color(red)(5x^2)(x+3)color(red)(-6x)(x+3)color(red)(-8)(x+3)color(magenta)(+24)-27#

#=color(red)(5x^2)(x+3)color(red)(-6x)(x+3)color(red)(-8)(x+3)-3#

#"quotient "=color(red)(5x^2-6x-8)," remainder "=-3#

#rArr(5x^3+9x^2-26x-27)/(x+3)#

#=5x^2-6x-8-3/(x+3)#