How do you solve the system of equations #3x + 11y = 9# and #2x - 11y = 6#?
2 Answers
The solutions are
Explanation:
We apply Cramer's rule
The determinants are
The solutions are
graph{(3x+11y-9)(2x-11y-6)=0 [-10, 10, -5, 5]}
Explanation:
#3xcolor(red)(+11y)=9to(1)#
#2xcolor(red)(-11y)=6to(2)#
#"note the terms in y have opposing signs so that adding"#
#"these terms together will eliminate y"#
#(1)+(2)" term by term"#
#(3x+2x)+(11y-11y)=(9+6)#
#rArr5x=15#
#"divide both sides by 5"#
#(cancel(5) x)/cancel(5)=15/5#
#rArrx=3#
#"substitute this value into either "(1)" or "(2)" and "#
#"solve for y"#
#"substituting in "(1)" gives"#
#(3xx3)+11y=9#
#rArr9+11y=9#
#"subtract 9 from both sides"#
#cancel(9)cancel(-9)+11y=9-9#
#rArr11y=0rArry=0#
#color(blue)"As a check"#
#"substitute these values in "(2)#
#(2xx3)-(11xx0)=6-0=6larr" True"#
#rArr"the point of intersection "=(3,0)#
graph{(y+3/11x-9/11)(y-2/11x+6/11)=0 [-10, 10, -5, 5]}