How do you solve #\frac { 3n } { 10} + \frac { 11} { 20} = \frac { 5} { 8}#?

1 Answer
Jul 30, 2017

See a solution process below:

Explanation:

Step 1) Subtract #11/20# from each side of the equation to isolate the #n# term while keeping the equation balanced:

#(3n)/10 + 11/20 - 11/20 = 5/8 - 11/20#

#(3n)/10 + 0 = 5/8 - 11/20#

#(3n)/10 = 5/8 - 11/20#

Step 2) Put each fraction on the right side of the equation over a common denominator and subtract the fractions:

#(3n)/10 = (5/5 xx 5/8) - (2/2 xx 11/20)#

#(3n)/10 = 25/40 - 22/40#

#(3n)/10 = (25 - 22)/40#

#(3n)/10 = 3/40#

Step 3) Multiply each side of the equation by #color(red)(10)/color(blue)(3)# to solve the equation for #n# while keeping the equation balanced:

#color(red)(10)/color(blue)(3) xx (3n)/10 = color(red)(10)/color(blue)(3) xx 3/40#

#cancel(color(red)(10))/cancel(color(blue)(3)) xx (color(blue)(cancel(color(black)(3)))n)/color(red)(cancel(color(black)(10))) = cancel(color(red)(10))/cancel(color(blue)(3)) xx color(blue)(cancel(color(black)(3)))/(color(red)(cancel(color(black)(40)))4)#

#n = 1/4#