Step 1) Because the second equation is already solve for #y# we can substitute #(-3x - 22)# for #y# in the first equation and solve for #x#:
#-4x - 8y = 16# becomes:
#-4x - 8(-3x - 22) = 16#
#-4x - (8 * -3x) - (8 * -22) = 16#
#-4x - (-24x) - (-176) = 16#
#-4x + 24x + 176 = 16#
#(-4 + 24)x + 176 = 16#
#20x + 176 = 16#
#20x + 176 - color(red)(176) = 16 - color(red)(176)#
#20x + 0 = -160#
#20x = -160#
#(20x)/color(red)(20) = -160/color(red)(20)#
#(color(red)(cancel(color(black)(20)))x)/cancel(color(red)(20)) = -8#
#x = -8#
Step 2) Substitute #-8# for #x# in the second equation and calculate #y#:
#y = -3x - 22# becomes:
#y = (-3 * -8) - 22#
#y = 24 - 22#
#y = 2#
The Solution Is: #x = -8# and #y = 2# or #(-8, 2)#