What is the equation of the tangent line of # f(x)=(x-1)^2/(x+2) # at # x=3 #?
1 Answer
Aug 2, 2017
Explanation:
#•color(white)(x)m_(color(red)"tangent")=f'(x)" at x = a"#
#"differentiate using the "color(blue)"quotient rule"#
#"given "f(x)=(g(x))/(h(x))" then "#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"#
#g(x)=(x-1)^2rArrg'(x)=2(x-1)#
#h(x)=x+2rArrh'(x)=1#
#rArrf'(x)=((x+2)2(x-1)-(x-1)^2)/(x+2)^2#
#rArrf'(3)=(20-4)/25=16/25#
#"and "f(3)=4/5#
#"using "m=16/25" and " (x_1,y_1)=(3,4/5)#
#rArry-4/5=16/25(x-3)#
#rArry=16/25x-28/25larr" equation of tangent"#