What are the roots of the equation #x^2 - 5x -2 = 0#?

1 Answer
Aug 3, 2017

See a solution process below:

Explanation:

We can use the quadratic equation to solve this problem:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(1)# for #color(red)(a)#

#color(blue)(-5)# for #color(blue)(b)#

#color(green)(-2)# for #color(green)(c)# gives:

#x = (-color(blue)((-5)) +- sqrt(color(blue)((-5))^2 - (4 * color(red)(1) * color(green)(-2))))/(2 * color(red)(1))#

#x = (color(blue)(5) +- sqrt(color(blue)(25) - (-8)))/2#

#x = (color(blue)(5) +- sqrt(color(blue)(25) + 8))/2#

#x = (color(blue)(5) +- sqrt(33))/2#