How do you solve this system of equations #\frac { 2x + y } { 3} = 15;\frac { 3x - y } { 5} = 1#?

1 Answer
Aug 5, 2017

#(x,y)to(10,25)#

Explanation:

#"the first step is to eliminate the fraction in both equations"#

#"multiply both sides by 3 for "(2x+y)/3=15#

#cancel(3)xx(2x+y)/cancel(3)=3xx15#

#rArr2x+y=45#

#"multiply both sides by 5 for "(3x-y)/5=1#

#cancel(5)xx(3x-y)/cancel(5)=5xx1#

#rArr3x-y=5#

#"the two equations to be solved are therefore"#

#2x+color(red)(+y)=45to(1)#

#3xcolor(red)(-y)=5to(2)#

#"we can eliminate the term in y by adding the equations"#

#(1)+(2)" term by term on both sides"#

#(2x+3x)+(y-y)=(45+5)#

#rArr5x=50#

#"divide both sides by 5"#

#rArrx=10#

#"substitute this value into either of the 2 equations"#
#"and solve for y"#

#"substituting in "(1)" gives"#

#(2xx10)+y=45#

#rArry=45-20=25#

#color(blue)"As a check"#

#"substitute these values in "(2)#

#(3xx10)-25=30-25=5larr" True"#

#rArr" point of intersection "=(10,25)#
graph{(y+2x-45)(y-3x+5)((x-10)^2+(y-25)^2+0.02)=0 [-80, 80, -40, 40]}