How do you solve #\frac { 4x } { 2x - 1} + \frac { 3} { 2x + 1} \leq 0#?

2 Answers
Aug 7, 2017

The solution is # x in [-3/2, -1/2) uu [1/4, 1/2)#

Explanation:

We cannot do crossing over.

Let's rewrite and simplify the inequality

#(4x)/(2x-1)+(3)/(2x+1)<=0#

#(4x(2x+1)+3(2x-1))/((2x-1)(2x+1))<=0#

#(8x^2+4x+6x-3)/((2x-1)(2x+1))<=0#

#(8x^2+10x-3)/((2x-1)(2x+1))<=0#

#((4x-1)(2x+3))/((2x-1)(2x+1))<=0#

Let #f(x)=((4x-1)(2x+3))/((2x-1)(2x+1))#

Let's build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-3/2##color(white)(aaaa)##-1/2##color(white)(aaaa)##1/4##color(white)(aaaaa)##1/2##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##2x+3##color(white)(aaaa)##-##color(white)(aaa)##0##color(white)(aaa)##+##color(white)(aaaa)##+##color(white)(aaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##2x+1##color(white)(aaaa)##-##color(white)(aaa)##color(white)(aaaa)##-##color(white)(a)##||##color(white)(aa)##+##color(white)(aaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##4x-1##color(white)(aaaa)##-##color(white)(aaa)##color(white)(aaaa)##-##color(white)(a)##||##color(white)(aa)##-##color(white)(a)##0##color(white)(a)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##2x-1##color(white)(aaaa)##-##color(white)(aaa)##color(white)(aaaa)##-##color(white)(a)##||##color(white)(aa)##-##color(white)(a)##color(white)(aa)##-##color(white)(a)##||##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaa)##0##color(white)(aaa)##-##color(white)(a)##||##color(white)(aa)##+##color(white)(a)##0##color(white)(a)##-##color(white)(a)##||##color(white)(aa)##+#

Therefore,

#f(x)<=0# when # x in [-3/2, -1/2) uu [1/4, 1/2)#

graph{(4x)/(2x-1)+3/(2x+1) [-11.26, 11.25, -5.64, 5.61]}

Aug 7, 2017

#[-3/2,-1/2)uu[1/4,1/2)#

Explanation:

#"express the left side as a single fraction"#

#(4x(2x+1))/((2x-1)(2x+1))+(3(2x-1))/((2x-1)(2x+1))<=0#

#rArr(8x^2+10x-3)/((2x-1)(2x+1))<=0#

#"factorise the numerator using the "color(blue)"quadratic formula"#

#rArr((x+3/2)(x-1/4))/((2x-1)(2x+1))<=0#

#"the zeros of the numerator/denominator are"#

#"numerator "x=-3/2,x=1/4,"denominator "x=+-1/2#

#"note that "x!=+-1/2#

#"as this would result in the function being undefined"#

#"the domain is split into 5 intervals as follows"#

#(1)color(white)(x)x<=-3/2color(white)(x)(2)color(white)(x)-3/2<=x<-1/2#

#(3)color(white)(x)-1/2 < x<=1/4color(white)(x)(4)color(white)(x)1/4<=x<1/2color(white)(x)(5)color(white)(x)x>1/2#

#"consider a "color(blue)"test point in each interval"#

#"we want to find where the function is negative "x<=0#

#"substitute each test point into the function and consider"#
#"it's sign"#

#(1)color(white)(x)color(red)(x=-2 )to(+)/(+)tocolor(red)" positive"#

#(2)color(white)(x)color(red)(x=-1)to(-)/(+)tocolor(blue)" negative"#

#(3)color(white)(x)color(red)(x=0)to(-)/(-)tocolor(red)" positive"#

#(4)color(white)(x)color(red)(x=3/8)to(+)/(-)tocolor(blue)" negative"#

#(5)color(white)(x)color(red)(x=1)to(+)/(+)tocolor(red)" positive"#

#"hence the intervals that satisfy the inequality are"#

#-3/2<=x<-1/2" or "1/4<=x<1/2#

#"in interval notation " [-3/2,-1/2)uu[1/4,1/2)#
graph{(8x^2+10x-3)/((2x-1)(2x+1)) [-10, 10, -5, 5]}