First, add #color(red)(7)# to each side of the equation to write the equation in standard quadratic form:
#s^2 - 6s + color(red)(7) = -7 + color(red)(7)#
#s^2 - 6s + 7 = 0#
We can use the quadratic equation to solve this problem:
The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(1)# for #color(red)(a)#
#color(blue)(-6)# for #color(blue)(b)#
#color(green)(7)# for #color(green)(c)# gives:
#s = (-color(blue)((-6)) +- sqrt(color(blue)((-6))^2 - (4 * color(red)(1) * color(green)(7))))/(2 * color(red)(1))#
#s = (color(blue)(6) +- sqrt(color(blue)(36) - 28))/2#
#s = (color(blue)(6) +- sqrt(8))/2#
#s = (color(blue)(6) - sqrt(8))/2# and #s = (color(blue)(6) + sqrt(8))/2#
#s = (color(blue)(6) - sqrt(4 * 2))/2# and #s = (color(blue)(6) + sqrt(4 * 2))/2#
#s = (color(blue)(6) - sqrt(4)sqrt(2))/2# and #s = (color(blue)(6) + sqrt(4)sqrt(2))/2#
#s = (color(blue)(6) - 2sqrt(2))/2# and #s = (color(blue)(6) + 2sqrt(2))/2#
#s = color(blue)(6)/2 - (2sqrt(2))/2# and #s = color(blue)(6)/2 + (2sqrt(2))/2#
#s = 3 - sqrt(2)# and #s = 3 + sqrt(2)#