How do you solve the system of equations #y= - 4x + 17# and #- x - 3y = 4#?

1 Answer
Aug 8, 2017

See a solution process below:

Explanation:

Step 1) Solve the second equation for #x#:

#-x - 3y + color(red)(3y) = 4 + color(red)(3y)#

#-x - 0 = 4 + 3y#

#-x = 4 + 3y#

#color(red)(-1) xx -x = color(red)(-1)(4 + 3y)#

#x = (color(red)(-1) xx 4) + (color(red)(-1) xx 3y)#

#x = -4 - 3y#

Step 2) Substitute #(-4 - 3y)# for #x# in the first equation and solve for #y#:

#y = -4x + 17# becomes:

#y = -4(-4 - 3y) + 17#

#y = (-4 xx -4) + (-4 xx -3y) + 17#

#y = 16 + 12y + 17#

#y = 16 + 17 + 12y#

#y = 33 + 12y#

#y - color(red)(12y) = 33 + 12y - color(red)(12y)#

#1y - color(red)(12y) = 33 + 0#

#(1 - color(red)(12))y = 33#

#-11y = 33#

#(-11y)/color(red)(-11) = 33/color(red)(-11)#

#(color(red)(cancel(color(black)(-11)))y)/cancel(color(red)(-11)) = -3#

#y = -3#

Step 3) Substitute #-3# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:

#x = -4 - 3y# becomes:

#x = -4 - (3 xx -3)#

#x = -4 - (-9)#

#x = -4 + 9#

#x = 5#

The Solution Is: #x = 5# and #y = -3# or #(5, -3)#