How do you simplify #sqrt(12/13)#?

1 Answer
Aug 11, 2017

See a solution process below

Explanation:

We can rewrite the expression as: #sqrt(12)/sqrt(13)#

We can now rationalize the denominator (or, in other words eliminate the radical from the denominator) by multiplying the fraction by the appropriate value of #1#:

#sqrt(13)/sqrt(13) xx sqrt(12)/sqrt(13)#

#(sqrt(13) xx sqrt(12))/(sqrt(13) xx sqrt(13))#

#sqrt(13 xx 12)/13#

#sqrt(156)/13#

#sqrt(4 xx 39)/13#

#(sqrt(4) xx sqrt(39))/13#

#(2sqrt(39))/13#