How do you evaluate the integral #int x^2/(4+x^2)^2dx#?
1 Answer
Explanation:
We're asked to find the integral
#intcolor(white)(l)(x^2)/((x^2+4)^2)color(white)(l)dx#
Let's split this up into partial fractions:
#= intcolor(white)(l)1/(x^2+4) - 4/((x^2+4)^2)color(white)(l)dx#
#= intcolor(white)(l)1/(x^2+4)color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#
#= intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#
#= 1/4intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#
For the integrand
#= 1/2intcolor(white)(l)1/(u^2+1)color(white)(l)du - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#
The integral of
#= 1/2tan^-1u - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#
For the integrand
Then
#= 1/2tan^-1u - 8intcolor(white)(l)1/16cos^2scolor(white)(l)ds#
#= 1/2tan^-1u - 1/2intcolor(white)(l)cos^2scolor(white)(l)ds#
We can write
#= 1/2tan^-1u - 1/2intcolor(white)(l)1/2cos[2s] + 1/2color(white)(l)ds#
#= 1/2tan^-1u - 1/4intcolor(white)(l)cos[2s]color(white)(l)ds - 1/4intcolor(white)(l)1color(white)(l)ds#
For the integrand
#= 1/2tan^-1u - 1/8intcolor(white)(l)cospcolor(white)(l)dp - 1/4intcolor(white)(l)1color(white)(l)ds#
The integral of
#= 1/2tan^-1u - 1/8sinp - 1/4intcolor(white)(l)1color(white)(l)ds#
The integral of
#= 1/2tan^-1u - 1/8sinp - 1/4s + C#
Substitute back in
#= 1/2tan^-1u - 1/8sin[2s] - 1/4s + C#
Substitute back in
#= ((x^2+4)(2tan^-1u - tan^-1[x/2]) - 2x)/(4(x^2+4)) + C#
Substitute back in
#= ((x^2+4)tan^-1[x/2] - 2x)/(4(x^2+4)) + C#
Or
#color(blue)(ulbar(|stackrel(" ")(" "I = 1/4(tan^-1[x/2] - (2x)/(x^2+4)) + C" ")|)#