How do you integrate #\int \frac { \sin x \cos x } { \cos ^ { 2} x + 3\cos x + 2} d x#?
1 Answer
Explanation:
#I=int(sinxcosx)/(cos^2x+3cosx+2)dx#
Let
#I=intcosx/(cos^2x+3cosx+2)(sinxdx)=-intu/(u^2+3u+2)du#
Factor the denominator.
#I=-intu/((u+1)(u+2))du#
Find the partial fraction decomposition for
#u/((u+1)(u+2))=A/(u+1)+B/(u+2)#
#u=A(u+2)+B(u+1)#
Letting
#-1=A(-1+2)+B(-1+1)" "=>" "A=-1#
Letting
#-2=A(-2+2)+B(-2+1)" "=>" "B=2#
Thus:
#u/((u+1)(u+2))=(-1)/(u+1)+2/(u+2)#
Then (remember the integral had a
Which are both simple integrals found through using the natural logarithm:
#I=lnabs(u+1)-2lnabs(u+2)+C#
Reversing the earlier substitution:
#I=lnabs(cosx+1)-2lnabs(cosx+2)+C#