How do you simplify #\frac { 11x } { 10} + \frac { 14x } { 15}#?

3 Answers
Aug 14, 2017

#(61x)/30#

Explanation:

1) You need to make denominators the same, so the first fraction multiply by #3/3# and the second fraction multiply by #2/2#:

#(11x)/10 xx 3/3+(14x)/15 xx 2/2#

#=\frac{33x}{30}+\frac{28x}{30}#

2) simplify

#\frac{33x}{30}+\frac{28x}{30}=\frac {61x}{30}#

Aug 14, 2017

=#(61x)/30#

Explanation:

=#[((11x)/10)xx15/15]+[((14x)/15)xx10/10]#

=#((165x)+(140x))/150#

= #[(305x)/150]-:5/5#

=#(61x)/30#

Aug 14, 2017

#(61x)/30#

Explanation:

#"before we can add the fractions we require them to have a"#
#color(blue)"common denominator"#

#"the "color(blue)"lowest common multiple " " (LCM) of 10 and 15"#
#"is 30"#

#"multiply the numerators/denominators of the fractions by the"#
#"relevant value to make the denominators 30"#

#rArr(11x)/10xx3/3+(14x)/15xx2/2#

#=(33x)/30+(28x)/30#

#"now add the numerators leaving the denominator"#

#=(33x+28x)/30#

#=(61x)/30#