How do you solve #\frac { x + 1} { x - 6} - \frac { x - 1} { x + 6} \leq 0#?

1 Answer
Aug 14, 2017

The solution is #x in (-oo,-6) uu [0, 6)#

Explanation:

We rearrange and simplify the inequality

#(x+1)/(x-6)-(x-1)/(x+6)<=0#

#((x+1)(x+6)-(x-1)(x-6))/((x+6)(x-6))<=0#

#((x^2+7x+6)-(x^2-7x+6))/((x+6)(x-6))<=0#

#((x^2+7x+6-x^2+7x-6))/((x+6)(x-6))<=0#

#((14x))/((x+6)(x-6))<=0#

Let #f(x)=((14x))/((x+6)(x-6))#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaaa)##-6##color(white)(aaaaa)##0##color(white)(aaaaaa)##6##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##x+6##color(white)(aaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x##color(white)(aaaaaaaaa)##-##color(white)(aaaa)##color(white)(aaa)##-##color(white)(aa)##0##color(white)(aa)##+## color(white)(aaaa)##+#

#color(white)(aaaa)##x-6##color(white)(aaaaaa)##-##color(white)(aaaaaaa)##-##color(white)(aaaa)##-##color(white)(a)##||##color(white)(aaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+##color(white)(aaaa)##-##color(white)(a)##||##color(white)(aaa)##+#

Therefore,

#f(x)<=0# when #x in (-oo,-6) uu [0, 6)#

graph{(x+1)/(x-6)-(x-1)/(x+6) [-41.1, 41.1, -20.56, 20.56]}