How do you find #\int 4x ^ { 2} e ^ { 2x } d x #?

2 Answers
Aug 14, 2017

# (2x^2-2x+1)e^(2x)+C.#

Explanation:

Let #int4x^2e^(2x)dx=4intx^2e^(2x)dx=4I, where, I=intx^2e^(2x)dx.#

We use the Rule of Integration by Parts (IBP) in the following

Form :

IBP : #intuvdx=uintvdx-int{(du)/dx*intvdx}dx.#

We take, #u=x^2, and, v=e^(2x).#

#:. (du)/dx=2x, and, intvdx=1/2e^(2x).#

#:. I=x^2(1/2e^(2x))-int{(2x)(1/2e^(2x))}dx,#

#=1/2*x^2e^(2x)-intxe^(2x)dx=1/2*x^2e^(2x)-J, where,#

# J=intxe^(2x)dx,# and, reapplying IBP with, #u=x, v=e^(2x),#

# J=x(1/2e^(2x))-int{(1)(1/2e^(2x))}dx,#

#=1/2*xe^(2x)-1/2inte^(2x)dx,#

#=1/2*xe^(2x)-1/2(1/2e^(2x)).#

# rArr J=1/2*xe^(2x)-1/4e^(2x).#

#:. I=1/2*x^2e^(2x)-1/2*xe^(2x)+1/4e^(2x).#

#:. int4x^2e^(2x)dx=4{1/2*x^2e^(2x)-1/2*xe^(2x)+1/4e^(2x)},#

#=2x^2e^(2x)-2xe^(2x)+e^(2x).#

# rArr int4x^2e^(2x)dx=(2x^2-2x+1)e^(2x)+C.#

Enjoy Maths.!

Aug 14, 2017

# int \ 4x^2e^(2x) \ dx = (2x^2 -2x+ 1)e^(2x) + c #

Explanation:

Another approach if you are keen to avoid Integration By Parts is to work backward from the derivative of a possible solution.

Knowing that IBP will reduce an integral involving #x^2e^(2x)# to an integral involving #xe^(2x)# and a further application will reduce an integral involving #xe^(2x)# to one involving #e^(2x)# then we would expect a solution of the form:

# int \ 4x^2e^(2x) \ dx = (Ax^2 + Bx+ C)e^(2x) + c #

Differentiating wrt #x# whilst applying the product rule, we get:

# 4x^2e^(2x) = (Ax^2 + Bx+ C)2e^(2x) + (2Ax + B)e^(2x) #
# " " = (2Ax^2 + (2B+2A)x+ B+2C)e^(2x) #

Equating coefficients, we get:

# x^2 : \ 4 = 2A \ \ \ \ \ \ \ \ \ \=> A=2 #
# x^1 : \ 0 = 2B+2A => B=-2 #
# x^0 : \ 0 = B+2C \ \ => C=1 #

Thus the solution is:

# int \ 4x^2e^(2x) \ dx = (2x^2 -2x+ 1)e^(2x) + c #