Question #653fb
2 Answers
The gradient of
Explanation:
what you are looking for is the instantaneous gradient at
First, we need to derive the function. To do that, simplify the function to make it easier to derive.
Hence:
Hence we derive this (remember, if
So:
Then simplify this (just to make it look better)
To find the gradient when
Hence the gradient of
To use limits, please see below.
Explanation:
The gradient at
Evaluation of these limits is quiet similar. Here is the second:
#= lim_(xrarr1) ((1-sqrtx)/sqrtx)/((x-1)/1)#
#= lim_(xrarr1) ((1-sqrtx)/sqrtx * 1/(x-1))#
One Method
#= lim_(xrarr1) -(sqrtx-1)/(sqrtx (x-1))#
#= lim_(xrarr1) -(sqrtx-1)/(sqrtx (sqrtx-1)(sqrtx+1))#
#= lim_(xrarr1) -1/(sqrtx(sqrtx+1))#
# = -1/(1(1+1)) = -1/2#
Another method
from
#= lim_(xrarr1) (1-sqrtx)/(sqrtx(x-1))#
#= lim_(xrarr1) ((1-sqrtx)(1+sqrtx))/(sqrtx(x-1)(1+sqrtx))#
#= lim_(xrarr1) (1-x)/(sqrtx(x-1)(1+sqrtx))#
#= lim_(xrarr1) (-(x-1))/(sqrtx(x-1)(1+sqrtx))#
#= lim_(xrarr1) (-1)/(sqrtx(1+sqrtx))#
# = -1/(1(2)) = -1/2#