Is #f(x) =(x-3)^3/(x^2-9)# concave or convex at #x=3#?

1 Answer
Aug 18, 2017

#"convex at "x=3#

Explanation:

#"to determine if a function is concave/convex at x = a"#
#"we require to evaluate "f''(a)#

#• " if "f''(a)>0" then convex at x = a"#

#• " if "f''(a)<0" then concave at x = a"#

#f(x)=(x-3)^3/(x^2-9)#

#color(white)(f(x))=(x-3)^3/((x-3)(x+3))=((x-3)^2)/(x+3)#

#"differentiate using the "color(blue)"quotient rule"#

#"given "f(x)=(g(x))/(h(x))" then "#

#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larr" quotient rule"#

#g(x)=(x-3)^2rArrg'(x)=2(x-3)#

#h(x)=x+3rArrh'(x)=1#

#rArrf'(x)=((x+3)2(x-3)-(x-3)^2)/(x+3)^2#

#color(white)(rArrf'(x))=(x^2+6x-27)/(x+3)^2#

#"differentiate "f'(x)" using the "color(blue)"quotient rule"#

#g(x)=x^2+6x-27rArrg'(x)=2x+6#

#h(x)=(x+3)^2rArrh'(x)=2(x+3)#

#rArrf''(x)=((x+3)^2(2x+6)-(x^2+6x-27)2(x+3))/(x+3)^4#

#rArrf''(3)=(36(12)-0)/(1296)>0#

#rArrf(x)" is convex at "x=3#
graph{(x-3)^2/(x+3) [-10, 10, -5, 5]}