How to solve this integral ??

#int((sin^(6)x + cos^(6)x)/(sin^(2)x * cos^(2)x))#

1 Answer
Aug 21, 2017

#tanx-3x-cotx+C#

Explanation:

#int(sin^6x+cos^6x)/(sin^2xcos^2x)dx#

Firstly, we need to simplify the integral to make it more accessible

So let
#" "s=sinx, c=cosx#

#=int((s^6+c^6)/(s^2c^2))dx#

Rewriting and simplifying the integral

#(s^6+c^6)/(s^2c^2)=((s^3)^2+(c^3)^2)/(s^2c^2)#

The numerator is sum of cubes

Using

#a^3+b^3=(a+b)(a^2-ab+b^2)#

We have,

#((s^2)^3+(c^2)^3)/(s^2c^2)=((s^2+c^2)(s^4-s^2c^2+c^4))/(s^2c^2)#

But #s^2+c^2=1#

#:.=((s^4-s^2c^2+c^4))/(s^2c^2)#

Now substitute back the sines and cosines

#=(sin^4x-sin^2xcos^2x+cos^4x)/(sin^2xcos^2x)#

#=sin^4x/(sin^2xcos^2x)-(sin^2xcos^2x)/(sin^2xcos^2x)+cos^4x/(sin^2xcos^2x)#

#=sin^2x/cos^2x-1+cos^2x/sin^2x#

#=tan^2x-1+cot^2x#

now back to the integral!

#int(sin^6x+cos^6x)/(sin^2xcos^2x)dx#

#=int(tan^2x-1+cot^2x)dx#

#=int(sec^2x-1-1+csc^2x-1)dx#

#=int(sec^2x-3+csc^2x)dx#

These are standard integrals!!

#=tanx-3x-cotx+C#