Find integration of tan^3 3x sec^4 3x dx?

2 Answers
Aug 22, 2017

Explanation:

using some trignometric formulae

Aug 22, 2017

#int tan^3 3x sec^4 3x dx# can also be written as #(tan^6 3x)/18 + (tan^4 3x)/12 +C#

Explanation:

Another answer sows how to get

#int tan^3 3x sec^4 3x dx = (sec^6 3x)/18 + (sec^4 3x)/12 +C# .

We can use #d/dx(tanx) = sec^2 x # to reason:

#int tan^3 3x sec^4 3x dx = int tan^3 3x (sec^2 3x) sec^2 3x dx#

# = int tan^3 3x (tan^2 3x + 1) sec^2 3x dx#

# = int (tan^5 3x + tan^3 3x) sec^2 3x dx#

# = int (tan^5 3x) sec^2 3x dx + int (tan^3 3x) sec^2 3x dx#

# = 1/3 (tan^6 3x)/6 + 1/3 (tan^4 3x)/4 +C#

# = (tan^6 3x)/18 + (tan^4 3x)/12 +C#