How do you fully simplify #(2x^3y)^4#?

1 Answer
Aug 26, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the term within the parenthesis:

#a = a^color(red)(1)#

#(2x^3y)^4 => (2^color(red)(1)x^3y^color(red)(1))^4#

Now, use this rule of exponents to remove the outer exponent:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(2^color(red)(1)x^color(red)(3)y^color(red)(1))^color(blue)(4) => 2^(color(red)(1) xx color(blue)(4))x^(color(red)(3) xx color(blue)(4))y^(color(red)(1) xx color(blue)(4)) => 2^4x^12y^4 => 16x^12y^4#