How do you solve #3\leq \frac { 2- x } { x + 2}#?

1 Answer
Aug 28, 2017

The solution is #x in (-2,-1]#

Explanation:

We rewrite the inequality as

#3<=(2-x)/(x+2)#

#3-(2-x)/(x+2)<=0#

#(3(x+2)-(2-x))/(x+2)<=0#

#(3x+6-2+x)/(x+2)<=0#

#(4x+4)/(x+2)<=0#

#(4(x+1))/(x+2)<=0#

Let #f(x)=(4(x+1))/(x+2)#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaaa)##-1##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##x+1##color(white)(aaaaa)##-##color(white)(aaaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aa)##||##color(white)(aa)##-##color(white)(aa)##0##color(white)(aa)##+#

Therefore,

#f(x)<=0# when #x in (-2,-1]#

graph{3-(2-x)/(x+2) [-28.87, 28.86, -14.43, 14.44]}