Find the sum of the first n terms of the series : #1+2*(1+1/n) + 3*(1+1/n)^2 + 4*(1+1/n)^3........#?

5 Answers
Aug 26, 2017

The sum is #=n^2#

Explanation:

This is an arithmetico-geometric series

#S=1+2(1+1/n)+3(1+1/n)^2+4(1+1/n)^3+..................(n-1)(1+1/n)^(n-2)+n(1+1/n)^(n-1)#............#(1)#

Multiply both sides by #(1+1/n)#

#(1+1/n)S=1(1+1/n)+2(1+1/n)^2+3(1+1/n)^3+..................(n-1)(1+1/n)^(n-1)+n(1+1/n)^(n)#....................#(2)#

Substract #(1)-(2)#

#S-(1+1/n)S=1+1(1+1/n)+1(1+1/n)^2+1(1+1/n)^3+..................(1)(1+1/n)^(n-1)-n(1+1/n)^(n)#

This a geometric series, of common ratio #(1+1/n)#, #-n(1+1/n)^(n)#

#S-S-S/n=-S/n=1+1(1+1/n)+1(1+1/n)^2+1(1+1/n)^3+..................(1)(1+1/n)^(n-1)-n(1+1/n)^(n)#

The sum of a geometric serie is

#S_n=a(1-r^n)/(1-r)#

#-S/n=1(1-(1+1/n)^n)/(1-(1+1/n))-n(1+1/n)^n#

#-S/n=1((1-(1+1/n)^n)/(1-1-1/n))-n(1+1/n)^n#

#-S/n=-n((1-(1+1/n)^n)-n(1+1/n)^n#

#-S/n=-n+n(1+1/n)^n-n(1+1/n)^n#

#S=n^2#

Aug 26, 2017

See below.

Explanation:

#sum_(k=0)^n (k+1)x^k = d/(dx) sum_(k=1)^(n+1) x^k = #

#= d/(dx)((x^(n+2)-1)/(x-1)-1)=(x^(n+1) (n (x-1) + x-2)+1)/(x-1)^2# and making #x = 1+1/n# we get at

#sum_(k=0)^n (k+1)(1+1/n)^k =n^2 + (1 + 1/n)^n (1 + n)#

NOTE:

For #n=3#

#1 + 2 (1 + 1/3) + 3 (1 + 1/3)^2 + 4 (1 + 1/3)^3=499/27#

#3^2 + (1 + 1/3)^3 (1 + 3)=499/27#

Aug 29, 2017

#n^2#

Explanation:

Here's a solution that uses no standard formula or differentiation:

Given:

#1+2*(1+1/n)+3*(1+1/n)^2+4*(1+1/n)^3+...+n(1+1/n)^(n-1)#

#= sum_(k=1)^n k(1+1/n)^(k-1)#

#= sum_(k=1)^n kx^(k-1)" "# where #x = 1+1/n = (n+1)/n#

Note that:

#(1-x) sum_(k=1)^(n-1) x^k#

#=sum_(k=1)^(n-1) x^k - sum_(k=2)^n x^k#

#=x+color(red)(cancel(color(black)(sum_(k=2)^(n-1) x^k))) - color(red)(cancel(color(black)(sum_(k=2)^(n-1) x^k))) - x^n#

#=x-x^n#

So:

#sum_(k=1)^(n-1) x^k = (x-x^n)/(1-x)#

We find:

#(1-x)sum_(k=1)^n kx^(k-1)#

#=sum_(k=1)^n kx^(k-1) - x sum_(k=1)^n kx^(k-1)#

#=sum_(k=1)^n kx^(k-1) - sum_(k=2)^(n+1) (k-1)x^(k-1)#

#=1+sum_(k=2)^n kx^(k-1) - sum_(k=2)^n (k-1)x^(k-1) - nx^n#

#=1-nx^n+sum_(k=2)^n x^(k-1)#

#=1-nx^n+sum_(k=1)^(n-1) x^k#

#=1-nx^n+(x-x^n)/(1-x)#

#=((1-nx^n)(1-x)+x-x^n)/(1-x)#

#=(1-color(red)(cancel(color(black)(x)))-nx^n+nx^(n+1)+color(red)(cancel(color(black)(x)))-x^n)/(1-x)#

#=(1-(n+1)x^n+nx^(n+1))/(1-x)#

So:

#sum_(k=1)^n kx^(k-1)= (1-(n+1)x^n+nx^(n+1))/(1-x)^2#

#color(white)(sum_(k=1)^n kx^(k-1)) = (1-(n+1)((n+1)/n)^n+n((n+1)/n)^(n+1))/(1-(1+1/n))^2#

#color(white)(sum_(k=1)^n kx^(k-1)) = n^2(1-(n+1)((n+1)/n)^n+n((n+1)/n)^(n+1))#

#color(white)(sum_(k=1)^n kx^(k-1)) = n^2(1-color(red)(cancel(color(black)((n+1)^(n+1)/n^n)))+color(red)(cancel(color(black)((n+1)^(n+1)/n^n))))#

#color(white)(sum_(k=1)^n kx^(k-1)) = n^2#

Aug 30, 2017

Let #x=1+1/n#

Then the sum 1st n terms of the given series may abbreviated as follows

#S=sum_(k=1)^(k=n)kx^(k-1)#

#=>S=d/(dx)sum_(k=1)^(k=n)x^k#

#=>S=d/(dx)[(x(x^n-1))/(x-1)]#

#=>S=[((n+1)x^n-1)/(x-1)-(x^(n+1)-x)/(x-1)^2]#

#=[(((n+1)x^n-1)(x-1)-(x^(n+1)-x))/(x-1)^2]#

#=[((n+1)x^(n+1)-(n+1)x^n-x+1-x^(n+1)+x)/(x-1)^2]#

#=[(nx^(n+1)-(n+1)x^n+1)/(x-1)^2]#

#=[(x^n(nx-n-1)+1)/(x-1)^2]#

#=[(x^n(n(1+1/n)-n-1)+1)/(1+1/n-1)^2]#

#=[(x^n(n+1-n-1)+1)/(1/n)^2]#

#=[(x^nxx0+1)/(1/n)^2]#

So #=>S=n^2#

Aug 30, 2017

See below.

Explanation:

Now considering

#sum_(k=0)^(n-1) (k+1)x^k = d/(dx) sum_(k=1)^n x^k = #

#= d/(dx)((x^(n+1)-1)/(x-1)-1)=(x^n (n (x-1) + x-1)+1)/(x-1)^2# and making #x = 1+1/n# we get at

#sum_(k=0)^(n-1) (k+1)(1+1/n)^k =n^2#