How do you find the derivative of #f(x)=5x arcsin(x)#?
1 Answer
Aug 30, 2017
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"given "f(x)=g(x)h(x)" then"#
#f'(x)=g(x)h'(x)+h(x)g'(x)larr" product rule"#
#g(x)=5xrArrg'(x)=5#
#h(x)=arcsinxrArrh'(x)=1/(sqrt(1-x^2))#
#rArrf'(x)=(5x)/(sqrt(1-x^2))+5arcsinx#