How do you subtract #\frac { 3} { x - 2} - \frac { x + 2} { x }#?

1 Answer
Aug 31, 2017

#3/(x-2) - (x+2)/x = -(x^2-3x-4)/(x^2-2x)#

Explanation:

A fraction construct is such that we have:

#("count")/("size indicator")->("numerator")/("denominator")#

You can not DIRECTLY add or subtract 'counts' unless the 'size indicators' are the same

#color(green)([3/(x-2)color(red)(xx1)] -[(x+2)/xcolor(red)(xx1)]#

#color(green)([3/(x-2)color(red)(xx x/x)] -[(x+2)/xcolor(red)(xx(x-2)/(x-2))]#

Note that #(x+2)(x-2) = x^2-2^2#

#(3x)/(x(x-2))-(x^2-2^2)/(x(x-2))#

Now we can subtract the 'counts'

#(3x-x^2+4)/(x(x-2))#

#(-x^2+3x+4)/(x(x-2)#

#-(x^2-3x-4)/(x(x-2)) #

Lets see if we can cancel anything through factoring

#-((x+1)(x-4))/(x(x-2)) # Nothing immediately obvious

So #3/(x-2) - (x+2)/x = -(x^2-3x-4)/(x^2-2x)#